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Abstract 

The thermal performance of an inductively heated film sandwiched between two 
identical adherends is investigated. Models for infinite conductivity finite thickness 
adherends, finite conductivity semi-infinite thickness adherends, and finite conductivity 
finite thickness adherends are presented. Calculations are performed for polymer-matrix 
composite, ceramic, and metal adherends for a variety of adherend thicknesses. The 
results show that for expected bonding applications, film heating rates will be reduced by 
a factor of 10-100, as compared with insulated film heating rates with no attached 
adherends. Higher reductions in heating performance are noted for ceramic and metal 
adherends as compared with composite adherends. However, even with the most severe 
reductions in heating rates, bonding with inductively heated films is feasible. 
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1. Introduction 

1.1 Motivation. The need to reduce weight and improve survivability in Army vehicle 

and weapons systems has led to increasing usage of polymer-matrix composites and ceramic 
materials for structural and armor applications. These materials, however, pose major chal- 
lenges for integration into complex assemblies due to limitations in joining technology. Unlike 
metallic structures, which can be welded or fastened mechanically, composites and ceramics 

require surface bondin, 0 methods such as thermoplastic hot-melt bonding or adhesives. Since 
each material satisfies specific performance objectives, final assemblies will often involve mul- 
tiple materials. This characteristic requires that composites and ceramics will be bonded to 
many different materials, including metals and other composites and ceramics. 

Recent efforts have shown the potential of using inductively heated films for bonding [I]. A 
thermoplastic or adhesive is doped with micron-sized magnetic particles. In a high frequency 
magnetic field, these magnetic particles heat. This thermal energy melts the thermoplastic to 
form a hot-melt bond, or cures the adhesive. Because the films are generally thin and the 
magnetic field penetrates completely into the film, heating in the film is reasonably uniform. 

For magnetic particle film bonding to be feasible, the film heating rate must be sufficient 
to generate the time-temperature profile required for a given bonding process. Wetzel and 
Fink [I] have predicted heating rates for magnetic particle films as a function of magnetic field 
characteristics and material properties. However, these predictions assume an insulated film 
with no thermal losses, so that the conductive losses into the adherends are neglected. 

In this report we construct models to predict the effect of the adherends on the film heating 
performance. Because of the range of materials and plate thicknesses which will eventually 
be joined using this technology, a general model is derived which can be used as a design 
tool for future joining scenarios. Specific calculations are also provided for a wide range of 
likely adherend properties, to assess the order-of-magnitude effects of adherends on bondline 
processing. 

1.2 Approach. Our objective is to assess the changes in bond processing caused by the 
presence of the adherend. The most relevant metric for quantification of magnetic particulate 
film heating performance is the bondline heating rate [ 11. To calculate this metric, heat transfer 
solutions are derived or cited for the case of a volumetrically heated film attached to different 
classes of adherends in section 2. These models are used to calculate the heating rate at the 
bondline. Comparing these heating rates with the heating rates predicted for an insulated film 
with no attached adherend provides a quantitative measure of the effect of the adherend on the 
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Figure 1. Schematic for Film / Adherend Heat Transfer Models. 

bondline thermal processing. Such comparisons are provided for specific adherend materials 
and thicknesses in section 3, and a general discussion on the implications and applicability of 

these results is provided in section 4. 

The model geometry we will use is shown in Figure 1. A volumetrically heated film of 
thickness 1 is insulated on one side and attached via a perfectly-conducting interface to a con- 
ductive adherend of thickness L. Although the film is a two-phase particulate composite, we 
will treat it as a uniform material with density, specific heat, conductivity, and thermal diffu- 
sivity denoted by ,6, &, i, and & E i/&,, respectively. We assume that the film is sufficiently 
thin and conductive (small Z2/&) such that the temperature in the film is always uniform. More 
formally, we assume that t, >> Z2/ ~5, where t, is the process time scale. The film generates 
heating power per unit volume of &T E &T/IA,, where A, is the cross-sectional area of the 
film and QT is the total heating power in the film. The adherend has thermophysical properties 
p, cP, Ic, and cu E ~/PC,, and is insulated on its free face. The analysis is I-D, so that both 
adherend and film are assumed to be infinite in cross-section. 

The insulated film assumption can be interpreted in two ways. The most obvious interpre- 
tation is that the film is attached to a thermally insulating medium. The second interpretation 
is a symmetry boundary condition. If a film is placed symmetrically between two identical 
adherends, there is no heat flow across the sandwich centerline. Therefore our model results 
can be interpreted as the heating rates for a piece of film of thickness 21 sandwiched between 
two adherends composed of identical material, and each of thickness L. 

Three different heat transfer models will be presented, each involving different physical 
assumptions. The first model (section 2.1) assumes finite adherend thickness, but infinite ad- 
herend conductivity. The temperature is assumed to be uniform in the adherend, so it only 
provides a lumped thermal mass in addition to that of the film itself. This solution is most 
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relevant to thin, highly conductive adherends or long process times. The second model (sec- 
tion 2.2) assumes a semi-infinite adherend thickness, and finite adherend conductivity. This 
solution is most relevant to thick, poorly conducting adherends or short process times. The 
third model (section 2.3) is the most general case, with finite adherend thickness and conduc- 
tivity. The infinite conductivity and semi-infinite thickness adherend models are limiting cases 
of this general solution. 

2. Bondline Heating Rate Solutions 

In this section we present solutions for the bondline heating rates for three different ad- 
herend scenarios. Two of these solutions address limiting adherend characteristics: an ad- 
herend with infinite conductivity and finite thickness, and an adherend with finite conductivity 
and semi-infinite thickness. The third solution is the most general, for an adherend with finite 
conductivity and finite thickness. 

2.1 Infinite Conductivity, Finite Thickness Adherend. TO model thin, highly 
conductive adherends, in this section we solve for the heating rate for the case of an adherend 
with infinite conductivity, k + DC). In this case the temperature in both the film and adherend 

is uniform. 
The total heating power generated in the film is 

QT= QTV~=QTAJ 

where Vj is the film volume. The heat capacity of the film can be written as 

film heat capacity = ~~pV’ = ,i%pA,l 

(1) 

(2) 

and the adherend heat capacity can be written as 

adherend heat capacity = pcpVa = ,q,A,L (3) 

Assuming uniform temperatures and heat generated only in the film, a lumped energy balance 
can be written as 

&T&I = g (&A,l+ ,OC,A,L) 

3 
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where T is the adherend temperature and t is time. Simplifying yields 

pg(1+!g) 
This equation can be rewritten as 

dT & H -=-- 
dt ,6& 1 + H 

where 

(5) 

(6) 

(7) 

Wetzel and Fink [I] calculate the expected heating rates for magnetic particle films as a 
function of magnetic field strength and frequency, and polymer film and magnetic particle 
material properties. The heating rates are derived assuming an insulated film with no attached 
adherend, with the result expressed as 

dT QT 
dt = fzp (8) 

where &T is determined by the specific film material system and magnetic field characteristics 
under consideration. For comparison with these insulated, isolated film heating rates, it will be 
useful to define the reduced heating rate 

R rate z 
Heating rate with adherend 

Heating rate without adherend 

= Heating rate with adherend 
- 

&T/i% 

Using equation 6, the reduced heating rate for an adherend with infinite conductivity is 

Kate = & 
Figure 2 shows R,,, as a function of H. 

4 

(9) 

(10) 

(11) 



Figure 2. Reduced Heating Rate as a Function of H for Infinite Conductivity Adherend Solu- 
tion. 

2.2 Finite Conductivity, Semi-Infinite Thickness Adherend. Thick adher- 
ends can be approximately modeled by assuming a semi-infinite adherend, L + co. The 
transient temperature profile in such an adherend, for the case of a perfectly-attached, thin, in- 
finite conductivity, heat-generating film, is given by Trankle [2] (as cited in Carslaw and Jaeger 

[31) as 

1 12&z -,2 --e 4at - 
4f 1 

where 

(13) 

T; is the initial, uniform temperature in the adherend, and x is the spatial coordinate in the 

thickness direction, with x = 0 at the film / adherend interface. We are only interested in the 
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temperature at this interface, where 

We can rewrite this equation as 

qo, q = T;(O) + 7 [&2Gfi- G+ Ge(‘/;)erfcfi 

where 

(14) 

(1% 

The heating rate at the film / adherend interface can be calculated by differentiating equation 1.5 

with respect to time, giving 

(17) 

Using equation 10, we can write the reduced heating rate for the case of the semi-infinite 
adherend as 

R - I”& G 
rate - p-e(tlTi'i)efc 

k ‘Ii 
(18) 

or 

This equation gives the reduced heating rate for the case of a semi-infinite adherend. Figure 3 
gives Rrate as a function of reduced time t/-r;, as calculated through equation 19. 

2.3 Finite Conductivity, Finite Thickness Adherend. The most general so- 
lution models an adherend with finite thickness L and finite conductivity k. The adherend 
is insulated at z = L, and at x = 0. A perfectly-attached, thin, infinite conductivity, heat- 

generating film is bonded to the adherend at x = 0, and the adherend is insulated at x = L. 
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Figure 3. Reduced Heating Rate as a Function of t/r; for Semi-Infinite Adherend Solution. 

The transient temperature profile for this case is given by Carslaw and Jaeger [4] as 

QT T(z,t) = Ti + -$frj 
P 

11+3H 
-6(1+H)2 

+ L(1 - zm2 + e-j 
2 l+H l+H 

4cos(k,[l - z/L]) 
- &O k;(H + H2k; + 1) cos k, e 

-k;tjrf 

where the dimensionless parameter H was defined in equation 7 and 

k, are the roots to the transcendental equation 

Itank,+ Hk, = 01 (22) 
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For our adherend studies, we are only interested with the temperature at the film / adherend 
interface, z = 0, where 

11+3H 1 1 
QT 

-- 

T(W) = T; + -E-&HTf 
6 (1 + H)2 +2l+H 

t l?f -+- 
l+H 

2 (23) 

-k,c,o k;(H+ H2k;+l)e 
-k2,t/Tf 

The heating rate at the film / adherend interface can be calculated by differentiating equation 23 

with respect to time, giving 

g(O,t) = @Hq { llrf - 
-2gyrj 

13-H &k;(HtH2k;tl)e 
-k;t/rr 

PCP 

(24) 

or 

(25) 

Using equation 10, we can write the reduced heating rate for the case of the semi-infinite 
adherend as 

&ate = x- 2H 
l+H+kn?-o (H+H%z+l)e 

-k;t/q 
(26) 

Figure 4 shows R,,, as a function of reduced time t/rf and H, calculated using equation 26 
(summing to 500 roots using Mathematics@). Note that smaller values of H cause a greater 
reduction in heating rate, and that at long times the reduced heating rate approaches a constant 
value. Figure 5 superimposes the general solution on top of the solution for a semi-infinite 
thickness adherend, equation 19, and a finite thickness infinite conductivity adherend, equa- 
tion 11. To make the comparison with the semi-infinite adherend, we utilize the transformation 

r; = H2,rf (27) 

to calculate I&, in equation 19 as a function of rj and H. For small times, t < 0.17;, the gen- 

eral solution matches the semi-infinite thickness solution. For large times, t > ri, the general 
solution matches the infinite conductivity solution. These observations show that the semi- 
infinite thickness solution is the short time model of the general problem, while the infinite 
conductivity model is the long time model of the general problem. 
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Figure 4. Reduced Heating Rate as a Function of t/rf and H for Finite Adherend Solution. 

3. Calculations 

’ In this section we perform heating rate calculations, using the models derived in section 2, 
for specific, likely adherend materials and thicknesses and likely film materials and thicknesses. 
The applicability of each result is discussed in more detail in section 4.1. 

3.1 Material Properties. For our induction bonding application, the volumetrically 
heating film is a particulate composite composed of magnetic particles dispersed in a poly- 
mer matrix. The thermophysical properties of this film can be calculated from the component 
material properties using a simple volume averaging approach 

j = Wff + (1 - Wf)j (28) 

tp = WfCp + (1 - Vj)Ep (29) 

where VU~ is the particle volume fraction, p and cP are particle properties, and p” and EP are matrix 
properties. Since we have assumed uniform temperature in the film, the film conductivity and 
thermal diffusivity are not relevant. For specific calculations, we will use a promising material 
system identified by Wetzel and Fink [ 11 which contains 15% by volume nickel zinc ferrite. 
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Figure 5. Reduced Heating Rate as a Function of t/r~ and H for Finite Adherend Solution, 
with Superimposed Semi-Infinite Thickness Adherend Model and Infinite Conductivity Solu- 
tion. 
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Table 1. Film Component and Composite Material Properties. Polymer properties are typical 
for engineering thermoplastics and adhesives. Nickel zinc ferrite properties from Snelling 
[5]. Film properties calculated using equations 28 and 29 with a particle volume fraction of 
TlUf = 15%. 

Polymer NiZn Ferrite Composite Film 
Density, 6 (kg/m3) 1000 4500 1525 

Specific Heat, & (J/kg K) 1000 750 963 

Table 2. Adherend Thermophysical Properties. Polymer composite properties typical for en- 
gineering polymers. Ceramic properties (alumina) from Sheppard [6]. Metal properties (alu- 
minum) from Ozisik [7]. 

Composite Ceramic Metal 
Density, p (kg/m3) 1000 3900 2700 

Specific heat, cp (J/kg K) 1000 1000 900 

Thermal conductivity, k (W/m K) 0.2 30 200 

Thermal diffusivity, LY E k/p+ (m2/s) 2.0 x 10s7 7.7 x low6 8.2 x 10V5 

Table 1 gives the material properties for the individual components and the 15% particulate 
composite film. 

The range of potential adherend materials used in applications includes polymer composite, 
ceramic, and metal. For composite materials, we will use the typical polymer material proper- 
ties given in Table 2. Steel and aluminum are both candidate metal materials for armor appli- 
cations. We will use aluminum properties for our representative metal adherend, as its higher 
thermal conductivity will provide a more extreme bound on possible adherend thermal loss 
effects. The aluminum thermophysical properties are given in Table 2. Two common ceramics 
used in armor applications are alumina and silicon carbide. The density and heat capacity of 
these materials are similar, but their thermal conductivities vary by an order of magnitude, with 
a value of N 30 W/m K for alumina and 270 W/m K for silicon carbide. We will use alumina as 

our model ceramic, since it provides a more intermediate value between the cases of metal and 
polymeric composite. However, the reader is cautioned to check material properties carefully 
before using the results calculated in later sections, as the high thermal conductivity of some 
ceramics may make them closer to our representative “metal” material properties than to our 
“ceramic” material properties. The full alumina thermophysical properties are given in Table 2. 
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Figure 6. Reduced Heating Rate as a Function of Film Thickness Ratio l/L for Various Ad- 
herend Materials and Infinite Conductivity Adherend Solution. 

3.2 Bondline Heating Rates fo,r Specific Material Systems. 

3.2.1 Infinite Conductivity Adherend. Equation 11 predicts the reduced heating rate for a 
film in contact with an adherend with infinite conductivity. Using this model, Figure 6 shows 
R,, as a function of film thickness ratio l/L for each adherend material in Table 2. Note 
that a ceramic adherend reduces the heating rate more than an aluminum adherend of identical 
thickness. This result occurs because, if the adherend is assumed to be at uniform temperature, 
thermal conductivity is no longer a relevant physical parameter. The reduction in heating rates 
is caused completely by heat capacity effects, and for our material properties the ceramic has 
a higher heat capacity than the aluminum. The plots also show that for film thickness ratios 
between 0.01 and 0.1, the adherend will reduce the insulated film heating rate by a factor of 10 
to 100. 

3.2.2 Semi-Infinite Thickness Adherend. Equation 19 predicts the reduced heating rate for 
a film in contact with an adherend with semi-infinite thickness. Unlike the infinite conductivity 
results of section 3.2.2, we cannot define a thickness ratio since the adherend thickness is not 
finite. Therefore, for adherend material studies, we are forced to calculate reduced heating 
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Figure 7. Reduced Heating Rate as a Function of Time and Film Thickness for Various Ad- 
herend Materials and Semi-Infinite Adherend Solution. 

rates for specific film thicknesses. Equation 19 also shows that the reduced heating rate is 
a function of time. Figure 7 shows reduced heating rate as a function of film thickness and 
time, for the adherend materials of Table 2. The same data is presented in Figure 8, but allows 
easier interpretation as time for heating rate to be reduced to a given R,,,, as a function of film 
thickness. Note that for a low conductivity adherend, such as a polymer composite, the heating 
rate will be reduced by a factor of 10 in under a minute, and by as much as 100 after a few 
minutes. For higher conductivity materials, such as aluminum, the thermal loss is more severe, 
reducing the heating rate to l/1000 of its insulated value in under one minute. However, as 
will be discussed in section 4.1, these results are only applicable to high conductivity materials 
such as aluminum if the adherend is extremely thick. 

, 

3.2.3 Finite Thickness, Finite Conductivity Adherend. Equation 26 predicts the,reduced 
heating rate for a film in contact with an adherend with finite thickness and finite conductivity. 
Figures 9 - 11 show the reduced heating rate as a function of time and adherend thickness, 
for film thicknesses of 0.1 mm, 1 mm, and 5 mm, respectively. The adherend material prop- 
erties are given by Table 2, and equation 26 is implemented by summing to 500 roots using 
Mathematics@. 
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Figure 8. Time to Achieve Reduced Heating Rates as a Function of Film Thickness for Various 
Adherend Materials and Semi-Infinite Adherend Solution. 
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Figure 9. Reduced Heating Rate as a Function of Time and Adherend Thickness for Various 
Adherend Materials, with 0.1 mm Film Thickness and Finite Adherend Solution. 
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Figure 10. Reduced Heating Rate as a Function of Time and Adherend Thickness for Various 
Adherend Materials, with 1 mm Film Thickness and Finite Adherend Solution. 
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Figure 11. Reduced Heating Rate as a Function of Time and Adherend Thickness for Various 
Adherend Materials, with 5 mm Film Thickness and Finite Adherend Solution. 
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First consider the case of a 0.1 mm film thickness, Figure 9. The adherend thicknesses 
shown, 5 mm, 1 cm, and 2 cm, are relatively thin adherends since the film thickness is also 
thin. For the aluminum and ceramic cases, note that the heating rate drops to the infinite 
conductivity solution value within seconds. For a 5 mm thick adherend, the heating rate is 
reduced by a factor of 100. For the thicker adherends, the heating rate reduction approaches 
a factor 1000. Note that in all cases the ceramic adherend results in a lower effective heating 
rate than the aluminum adherend. This behavior occurs because the adherends closely follow 
the infinite conductivity solution, which is governed by specific heat. For the thickest polymer 
adherend, 2 cm, the results closely follow the infinite adherend solution through 500 s. For the 
thinner adherends, the infinite conductivity solution is reached at large times, > 300 s. For all 
of the polymer adherend thicknesses, the heating rate is reduced by roughly a factor of 100. 

Figure 10 shows the reduced heating rates for the case of a 1 mm film. The adherend 
thicknesses used are 5 mm, 1 cm, 2 cm, and 5 cm. The behavior is qualitatively similar to that of 
the 0.1 mm adherend, except that the heating rates are a factor of 10 greater. The aluminum and 
ceramic adherends reduce the heating rates by a factor of lo- 100, while the polymer adherends 
reduce the heating rates by roughly a factor of 10. Again, ceramic adherends present a greater 
heat sink than the aluminum adherends. 

Figure 11 shows the reduced heating rates for the case of a 5 mm film. Since this is a 
very thick film, the adherend thickness used are 2 cm, 5 cm, and 10 cm. Note that, because of 
the thickness of the polymer adherends, all cases obey the semi-infinite thickness model. The 
aluminum and ceramic adherends span the semi-infinite thickness and infinite conductivity so- 
lutions, depending on their thickness and the process time. Note that for the thicker adherends, 
initially the aluminum adherend presents a greater heat sink but at longer times the ceramic 
becomes a greater heat sink. The polymer adherends reduce the heating rates by up to a factor 
of 7, while the aluminum and ceramic adherends reduce the heating rates by a factor of lo- 100. 

4. Analysis and Conclusions 

4.1 Model Applicability. In section 3.2 we calculated reduced heating rates for a 
variety of adherend materials using three different heat transfer models. The model used in 
section 3.2.3 is most general, and applies to any adherend with finite conductivity and thick- 
ness. The models of sections 3.2.1 and 3.2.2 are only applicable under conditions of infinite 
adherend conductivity and thickness, respectively. Since, in practice, we do not ever encounter 
adherends with truly infinite conductivity or thickness, we need to establish a criterion for 
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determining the applicability of these models to a given adherend. This criterion is the charac- 
teristic thermal conduction time. 

We define the characteristic thermal conduction time for an adherend as 

L2 
t, = - 

a (30) 

Note that t, is equivalent to 7j defined by equation 21. t, is roughly the amount of time 
required for a significant amount of thermal energy to transport the distance L in a material 
with thermal diffusivity Q. For times much less than the characteristic thermal conduction 
time, t < t,, significant thermal energy does not reach the insulated face of the adherend, so 
the semi-infinite adherend solution models the behavior accurately. For times much greater 
than the characteristic thermal conduction time, t >> t,, thermal diffusion occurs very rapidly, 
so the infinite adherend conductivity solution models the behavior accurately. If t N t,, then 
only the general finite thickness, finite conductivity model will be accurate. These short-time, 
long-time solution relationships were shown graphically in Figure 5. 

To evaluate model applicability for a specific adherend material and thickness, equation 30 
should be used to calculate the characteristic conduction times. This approach provides a 
design tool for specific process prediction. For the purpose of general adherend material as- 
sessment, we will find it more appropriate to choose a characteristic processing time, and then 
calculate a characteristic conduction length. Based on equation 30, we define the characteristic 
thermal conduction length as 

L, = J cx . process time (31) 

Thermal conduction length, for a given process time, is a material parameter independent of 
adherend thickness. If an adherend thickness is much less than its characteristic conduction 
length, L < L,, then t >> t, and the infinite conductivity solution applies. If an adherend 
thickness is much greater than its characteristic conduction length, L >> L,, then t < t, and 
the semi-infinite adherend solution applies. If L N L,, then t N t, and only the general solution 
will predict accurate heating rates. 

Table 3 gives characteristic thermal conduction lengths for each adherend material in Ta- 
ble 2 and for a typical process time of 100 s. Using these results, we can assess the applicability 
of each model to each adherend material. The infinite conductivity model is most applicable to 
the metal adherend, and should be accurate for adherend thicknesses much less than 9 cm. For 
structural metal and light armor, with a thickness of only a few centimeters, this assumption 
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Table 3. Adherend Characteristic Conduction Lengths, as defined by equation 3 1, for a process 
time of 100 s. 

Composite Ceramic Metal 
Char. conduction length 4.47 mm 2.8 cm 9.1 cm 

should be accurate. The semi-infinite adherend thickness model is most applicable to the com- 
posite adherend, which has a low thermal conductivity and an L, of only 4 mm. For a typical 
1 or 2 cm composite structural or armor panel, this model should prove accurate. The thermal 
conduction length of the alumina ceramic is 3 cm, which is very close to the actual ceramic 
tile armor dimensions. Therefore it is most likely that the finite thickness, finite conductivity 
approach is the only model which will give accurate results for ceramic armor adherends. 

4.2 Effect of Adherends on Feasibility of Bonding with Magnetic Particle 
Films. Wetzel and Fink [l] have performed a feasibility study for bonding with magnetic 
particle films, considering both thermoplastic hot-melt bonding and elevated temperature adhe- 
sive bonding. Typical thermoplastic hot-melt bonding requires high temperatures (250-400” C) 
to ensure bond integrity but short process times (under 1 minute at processing temperature) to 
prevent thermal degradation [8]. This processing requires film heating rates of 10 - lOO”C/s. 
Elevated temperature accelerated adhesive bonds, which involve lower processing tempera- 
tures (100 - 180°C) and longer process times (5 - 20 minutes), only require heating rates of 
1 - lO”C/s. 

Wetzel and Fink [1] also provide predictions of heating rates for insulated magnetic particle 
films with no adherends. As a benchmark, we will use a 15% NiZn ferrite / polymer film. From 
Wetzel and Fink [ 11, the expected heating rates for an insulated film of this composition are 
given in Table 4 for field frequencies of 100 kHz, 1 MHz, and 10 MHz. Also shown in the 
table are the heating rates expected if the film is sandwiched between two identical adherends 
of various materials. A typical film thickness of 1 mm (half film thickness 1 = 0.5 mm) 
and adherend thickness of 2 cm are used for the calculations, and heating rate reductions are 
calculated using the finite thickness model of section 2.3. 

These heating rates results show that thermoplastic hot-melt bonding is marginally feasible 
with all adherends at high frequencies (10 MHz), and still feasible with thick composite adher- 
ends at moderate (1 MHz) frequencies. For elevated temperature adhesive bonding, composite 
adherends should be feasible even at low (100 kHz) frequencies, while metal and ceramic ad- 
herends should be feasible at higher (> 1 MHz) frequencies. 
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Table 4. Expected Heating Rates for 15% NiZn Ferrite / Polymer Film with Thickness 21 = 
1 mm Sandwiched Between Two Identical Adherends of Various Materials. 

Frequency 10 kHz 1 MHz 10 MHz 
No adherend (insulated) 12 “C/s 120 “C/s 1200 “C/s 
2 cm composite (after 1 minute) 1.2 “C/s 12 “C/s 120 “C/s 
2 cm composite (after 5 minutes) 0.6 “C/s 6 “C/s 60 “C/s 
2 cm ceramic 0.12 “C/s 1.2 “C/s 12 “C/s 
2 cm aluminum 0.18 “C/s 1.8 “C/s 18 “C/s 

The specific results presented in this section and in Table 4 are, of course, very limited. 
Only a few very specific adherend and film materials and thicknesses were taken into consid- 

eration. Additionally, the insulated film heating rates predicted in Wetzel and Fink [1] are only 
expected to be accurate to within one or two orders of magnitude. For more specific bonding 
design guidance, calculations should be performed for the materials and geometry under con- 
sideration, and experimentally measured film heat generation rates. However, these results do 
confirm the general feasibility of using magnetic particle films for bonding structural and armor 
components of various materials, including ceramics, metals, and polymer matrix composites. 

4.3 Extension of Results to Non-Symmetric Adherends. The results derived 
in this report are strictly applicable to symmetric adherends only. That is, only bonding of 
two identical adherends (both in thickness and material properties) can be modeled. However, 
many magnetic particle film bonds will be performed on unsymmetric adherends. Examples 
include ceramic-composite bonds in multi-functional armor and metal-composite bonds for 
steel-framed composite shell vehicles. The solutions from this report certainly provide bounds 
on heating rates. A composite to ceramic bond will behave somewhere between a composite- 
composite and a ceramic-ceramic bond. Deriving a full, general, unsymmetric solution is 
possible but will be mathematically difficult. Wetzel [9] provides closely related solutions, for 
the case of negligible film thermal mass. A much simpler approach is to numerically solve for 
specific non-symmetric adherend cases, using for example a finite difference solution. It may 
also be possible to demonstrate a simple empirical rule for unsymmetric adherends based on the 
symmetric adherend solutions. For example, calculating R,, independently for each adherend 
using the symmetric adherend solution and then using some sort of averaging approach to 
estimate the unsymmetric adherend solution. The investigation of unsymmetric adherends 
remains a topic for future investigation. 
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