Ambrell Chauffage par Induction
Ambrell Chauffage par Induction
brasage par induction

Soudage par Induction

Le brasage tendre (soudage) produit des assemblages étanches aux liquides et aux gaz de façon rapide et à faible coût. La plupart des applications de soudage par induction s’effectuent à l’air libre, la protection contre l’oxydation en surface et l’interaction avec l’atmosphère étant assurée par le flux. Le chauffage par induction convient parfaitement aux applications de brasage. La chaleur peut être appliquée à des zones spécifiques d’une pièce de façon très contrôlée et précise.

Le chauffage par induction est bien adapté aux applications de production en chaîne  du fait du faible temps de mise en température, des niveaux élevés de répétabilité et du chauffage propre et sans contact. Les systèmes d’induction pour le soudageont des puissances comprises entre 1 et 40kW.

Contactez Nous

Application Notes: Soudage

Les conseils sont uniquement disponibles en anglais mais n'hésitez pas à contacter Ambrell qui se fera un plaisir de vous aider. Cliquez sur l'un des nombreux conseils d'application sur le chauffage par induction après vous être inscrit gratuitement.

Heating Coaxial Wire and a Metal Frame for Soldering

Given the small size of the part and the assembly's geometry, a graphite cylinder was required as a susceptor.

Heating a Kovar Ferrule for Glass Soldering

The solder formed a relatively uniform domed seal around the fiber despite the asymmetry of the open C coil. It took under 10 seconds to heat the part to soldering temperature

Soldering a Fusible Copper Strip

It takes under 10 seconds to heat four copper strips concurrently, resulting in a boost in throughput for the client. Induction is a highly repeatable process that heats just the area of the copper strip that requires it

Soldering a pair of magnetic steel pins

Heating with induction required under 10 seconds and is a highly repeatable process; the customer can expect the same result every time with only the portion of the part requiring heating being heated. There is no open flame with induction, which makes it a safer method of heating than torch heating.

Soldering a rivet onto a steel tank cap with induction heating

Induction proved faster than the client's previous heating torch process. It is also is a repeatable heating process, so the client gets superior results and is more energy efficient than torch heating. Induction doesn't have an open flame and introduces less heat into the work environment than a torch

Soldering copper tabs for stringing, tabbing solar panels

Induction's precision heating ensures repeatable results and less damage to surrounding substrates while demonstrating reduced heat loss and lower energy usage...

Soldering a copper grounding lug and wire

For this grounding lug soldering application, induction delivers consistent result is achieved each time and does not present a flame, so it helps create a safer, cooler working environment than other methods

Soldering brass and steel radiator caps

The heating process is completed within 15 seconds with consistent results without the use of flame, creating a safer, cooler working environment...

Soldering a copper tube to a brass valve [flow valve]

The heating process was completed within 12 seconds, faster than the client's gas torch and more reliably. Without flame, induction helps create a safer, cooler working environment.

Soldering a copper wire, contactor assembly [motor]

High intensity heat must be applied to the joint area for this application so that thermal conduction of the copper does not sink away the heat delivered from the induction process.

Soldering a Ferrule to a Fiber Optic Cable (Hermetic Sealing)

To heat a Kovar ferrule and fiber optic cable to 297°F within 10 seconds for a soldering application, to form a hermetic seal

Soldering a fine copper wire to a connector assembly

induction heating delivered a higher quality joint, is more energy efficient than the outdated system that the client was using.

Soldering a steel canister for sealing

Current hand-soldering process results in uneven, non-uniform joints and requires long production times. Induction delivers uniform, quality joints by generating heat within the end-plate and reservoir walls.

Soldering Fiber Optic Cable to Fiber Ferrule with Glass Preform

Induction heating provides rapid localized heat only where needed, repeatable, consistent results with clean, controllable joints

Soldering a steel funnel to flex spout

Induction heating delivers non-contact energy-efficient heat without flame, resulting in repeatable and consistent results

Hermetically sealing a fiber optic cable in a kovar ferrule

Induction heating provides instant start up time, requiring very little power resources, pin point accuracy, a clean source of heat which is easily integrated into existing automated systems

Soldering windows to time indicator housings

Soldering soda lime glass metal edged windows to steel time

Soldering a copper chip to a silver dipped brass RF attenuator

Induction heating provides repeatable consistent results in all three areas soldered at the same time, not individually. Faster process time, increased production and even distribution of heating

Soldering wires onto three connector tabs on a three position wall socket plug

Customer is currently using a soldering iron & individually touching each soldering point which is producing inconsistent results and quality issues.

Soldering 3 copper spacers to circuit board simultaneously

Induction heating delivers precise, controlled application of heat in a repeatable, non-contact, clean heating process, enabling increased production capacity and improved energy efficiency

Soldering Electrical Flex Circuits

To heat multiple joints on flex circuit strips to 180-200°F within seven seconds for a soldering application.

Soldering a Radio Antenna

To heat a coaxial antenna assembly to 600°F within 2 seconds for a soldering application. The goal to improve on an existing procedure with a soldering iron which required 10 to 15 seconds.

Soldering Solar Flex Circuits

Heat multiple joints on solar flex circuit strips to 500°F (260°C) within ten seconds for a soldering application.

Soldering three fuse caps simultaneously

Soldering three fuse caps simultaneously to reflow lead free solder and make a joint between the fuse cap and fuse wire guide

Soldering three brass connectors in a solar panel junction box assembly

Solder three brass connectors one at a time in a solar panel junction box without affecting the components in the junction box

Soldering a steel cover onto a nickel plated EMI filter

Soldering a nickel plated steel cover onto a nickel plated steel EMI filter housing without damaging the RF circuit

Soldering 2 copper wires to copper buss bar

Induction heating delivers reduced solder time, even distribution of heating and improved joint-to-joint consistency

Soldering an LED assembly to an aluminum spotlight housing

A multi turn pancake coil is used to heat the bottom of the aluminum spotlight housing. The LED housing was not available so this application is done with temperature sensing paint to determine the feasibility

Soldering connector to wire harness

Induction heating provides reduced production cost, faster process time, hands-free heating that involves no operator skill for manufacturing

Soldering two connectors simultaneously to gound plate

Induction heating provides non-contact heat, hands-free heating that involves no operator skill for manufacturing with even distribution of heating

Soldering fabric to kovar tip assembly

A three turn pancake coil is used to heat the tip of the cone to 300 °F (149 °C) in 2-3 seconds

Soldering a kovar piece with glass to a copper base for a photon light source

Induction heating provides ability to use same equipment for both assembly and repair, hands-free heating that involves no operator skill for manufacturing, and uniform control of heat from part to part

Soldering brass and copper (anesthetic medical equipment)

This process is completed in two steps that use a 3 turn helical coil. The first process is to solder the brass ring to the copper piece which takes 85 seconds...

Soldering circuit board posts with lead or lead free solder preforms

Induction heating provides hands-free heating that involves no operator skill for manufacturing, lends itself well to automation, solder controlled by preforms, no excess left on board, good solder flow without over heating the board

Soldering Brass end cap on heat exchanger

A dual four turn pancake coil is used to solder 2 brass caps per cycle. Liquid solder is squirted onto the end cap and is heated for 18 seconds at 302°F (150°C) to burn off the flux

Reflowing the solder of an area on a circuit board

An aluminum fixture is a large heat sink to the induction field. In order for solder alloy to wick and run the length of the overlap area, flux is applied to the solder location...

Soldering of satellite antennas

Induction heating delivers increased production rate due to speed of heating, higher quality vs. a soldering iron due to precision and repeatability and cost savings due to reduced scrap and higher quality production

Soldering wires onto connector assemblies

Compared to using a manual soldering iron, induction heating precisely applies heat to for higher quality solder joints This is ideal for integrating with an automated system. By stick- feeding the solder more aesthetically pleasing parts are produced.

Soldering Co-axial Wire Assemblies

A multi-turn helical coil is used and temperature-indicating paint is applied to the joint area. The wire assembly is placed over the induction heating coil, and RF power is applied.

Soldering a copper tab on a speaker ring

With an efficient coil design induction heating easily reaches the desired reflow temperature in a very short amount of time.

Soldering a Stainless Steel Tube to Cylinder

Heat a.125 (3.175mm) diameter stainless steel tube to a 1 diameter cylinder 1 (25.4mm) tall for a soldering application

Soldering Steel Housing

A two-turn induction coil is used to deliver the heat energy into the steel housing. A small diameter solder wire is used to form a solder ring for the assembly process...

Soldering Cellular Phone Antenna

Soldering two brass tubes measuring 3/4" and 1/4" together for use as cellular phone antennas. The lengths of tubes range from four (4) feet to twelve (12) feet, and must be soldered along the axial side.

Soldering Ice Machine Evaporator assemblies

To heat a section of 3/8" copper tubing along with a 90 degree elbow for soldering. The copper tubing is to be used in Ice Machine Evaporator Assemblies, and soldering takes place after the tubes have been placed within the assembly.

Soldering Brass Bellows Assembly

To heat a brass bellows and end cap assembly to 450F for soldering within 20 seconds. Presently, a soldering iron is used to produce the joint between the bellows and cap.

Soldering Brass Slip Ring

To heat 1 3/4", 3" and 6" diameter brass slip rings and a sheathed copper wire assembly to 360F for soldering within three (3) to six (6) seconds. Currently production is accomplished by using a soldering iron and stick feeding rosin-cored solder...

Soldering Steel Connectors to a Brass Block

Heat an assembly of small, gold-plated steel connectors to a brass block, heating to specific regions of part

À propos du chauffage par induction

Chauffage par induction

Il est une méthode rapide, efficace, précise et répétable, sans contact permettant de chauffer les métaux ou les autres matériaux conducteurs d'électricité. Le matériau peut être un métal comme de l'acier, du cuivre, de l'aluminium, du laiton ou cela peut être un semi-conducteur comme du carbone, du graphite ou du carbure de silicium. Pour chauffer les matériaux non conducteurs comme le plastique ou le verre, l'induction est utilisée pour chauffer un suscepteur conducteur d'électricité, habituellement le graphite, qui transfère ensuite la chaleur du matériau non conducteur.

Lisez notre brochure de quatre pages "À propos du chauffage par induction"


Bobines d'Induction

Bobines d'Induction

La bobine d’induction, ou inducteur, est le composant du système de chauffage par induction qui détermine l’efficacité et le rendement du chauffage de la pièce.

La bobine sert à transférer l’énergie de l’alimentation en puissance et de la tête d’induction à la pièce, en créant un champ électromagnétique alternatif.


Voyez comment Ambrell peut vous aider à améliorer votre procédé de brasage! Le chauffage par induction concentre toute l’énergie dans votre pièce, éliminant ainsi le besoin d’un chalumeau ou d’un procédé coûteux de four discontinu. Brasez vos assemblages à l’aide d’un procédé sans flammes, répétable et précis.
La propreté des surfaces d’assemblage est critique
Les deux surfaces métalliques à assembler doivent atteindre la température requise en même temps.
Si la température est trop élevée, la solidité de l’assemblage ne peut être assurée.
Plutôt que des bâtonnets de brasure, préférer une brasure sous forme de pâte ou d’élément préformé qui sera placée dans les zones de l’assemblage avant le chauffage