Ambrell banner image

Induction Heating Fundamentals

Our solutions for induction heating can improve the efficiency and effectiveness of your industrial heating process. Contact us for money-saving, non-contact solutions for heating with induction: brazing, annealing, shrink-fitting, soldering, hardening and other applications can benefit from our induction heating consultants 25 years' experience creating precision heating solutions.

Featured Applications

Brazing a steel coupler and a steel wire

Brazing a steel coupler and a steel wire

Ambrell Featured induction heating video

Soldering a Fuel Pump Assembly


Review FREE materials

Ways to Use Induction

heating with induction in many applications

View Our Application Notes Library!

Brochure: About Induction Heating

Induction heating is a fast, efficient, precise and repeatable non-contact method for heating metals or other electrically-conductive materials. The material may be a metal such as steel, copper, aluminum, brass or it can be a semiconductor such as carbon, graphite or silicon carbide. To heat non-conductive materials such as plastics or glass, induction is used to heat an electrically-conductive susceptor, typically graphite, which then transfers the heat to the non-conducting material.

Read our 4-page brochure "About Induction Heating". Learn more about how the science of induction technology can solve your precision heating problems.


Induction Heating System

Ambrell EASYHEAT systems

The induction heating power supply converts AC line power to a higher frequency alternating current, delivers it to a work coil and creates an electromagnetic field within the coil. Your work piece is placed in that field which induces eddy currents in the workpiece. The friction from these currents generates precise, clean, non-contact heat. A water cooling system is generally required to cool the work coil and induction system.

Operating Frequency

induction heats a roller hub

The size of the work piece and the heating application dictate the operating frequency of the induction system. Generally the larger the work piece the lower the frequency, and the smaller the work piece the higher the frequency. The operating frequency is determined by the capacitance of the tank circuit, the inductance of the coil and the material properties of the work piece.

Magnetic Materials

induction heats a roller hub

If your work piece material is magnetic, such as carbon steel, it will be heated easily by induction’s two heating methods, eddy current and hysteretic heating. Hysteretic heating is very efficient up to the Curie temperature (for steel 600°C (1100°F)) when the magnetic permeability reduces to 1 and the eddy current is left to do the heating.

Depth of Penetration

induction heats a roller hub

Induced current in the work piece will flow at the surface where 80% of the heat produced in the part is generated in the outer layer (skin effect). Higher operating frequencies have a shallow skin depth, while lower operating frequencies have a thicker skin depth and greater depth of penetration.

Coupling Efficiency

induction used in shaft hardening

The relationship of the current flow in the work piece and the distance between the work piece and the coil is key; the closer the coil, the more current in the work piece. But the distance between the coil and the work piece must first be optimized for the heating required and for practical work piece handling. Many factors in the induction system can be adjusted to match to the coil and optimize the coupling efficiency.

Importance of Coil Design

induction heating in a controlled atmosphere

Induction heating efficiency is maximized if your work piece can be placed inside the coil. If your process won’t allow your work piece to be placed inside the coil, the coil can be placed outside of the work piece. The size and shape of the water-cooled copper coil will follow the shape of your work piece and be designed to apply the heat to the correct place on the work piece.

How Much Power do I Need?

induction heating a susceptor

The power required to heat your work piece depends on:

  • The mass of your work piece
  • The material properties of your work piece
  • The temperature rise you require
  • The heating time required to meet your process needs
  • The effectiveness of the field owing to the coil design
  • Any heat losses during the heating process

After we determine the power needed to heat your work piece we can select the correct induction heating system taking the coil coupling efficiency into consideration.

What about cooking with induction?

What about rice cookers?

Induction technology is found in millions of homes in rice cookers and stove top units because the energy transfer can be so precisely controlled and because no flame is used. In these cases, the current is induced either in the rice cooker's internal container or in the bottom of the pot or pan placed upon the active stovetop surface.

While we are experts in helping you improve the efficiency of your industrial heating, testing or research process, we do not provide any domestic products like cookers.